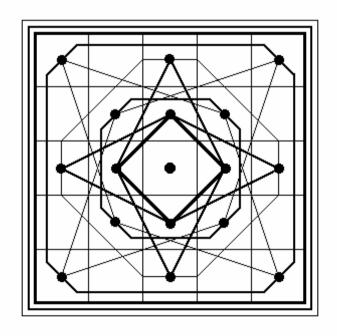
Ю. В. Чебраков

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ



Санкт-Петербург, 2010

УДК 511+512 ББК 22 Ч345

Рецензенты:

Доктор физико-математических наук, профессор С.-Петерб. техн. ун-та *М. А. Салль*Кандидат физико-математических наук, доцент ин-та истории естествознания и техники РАН *Л. И. Брылевская*

Чебраков Ю. В.

ЧЗ45 Теория магических матриц. – СПб.: Изд-во «ВВМ», 2010. – 280 с. – (Лекции по Математике. Вып. ТММ-1.)

ISBN 978-5-9651-0357-7

Данная книга является *первым выпуском* курса лекций, посвященных изложению современного варианта *теории магических матриц* (ТММ). В ней излагаются развитый автором функционально-алгебраический подход к решению различных комбинаторных задач о классических и нетрадиционных магических матрицах (в частности, о классических и нетрадиционных магических квадратах) и основные понятия и методы теории чисел, комбинаторного анализа, теории линейных уравнений и теории матриц, которые наиболее активно используются в ТММ.

Текст лекций написан простым понятным языком, содержит не только теоретический материал, но и описание разнообразных вычислительных алгоритмов и математических методов решения задач.

Книга рассчитана на широкий круг читателей: от студентов вузов и университетов до преподавателей и научных сотрудников.

УДК 511+512 ББК 22

© Ю. В. Чебраков, 2010

Глава 2. Линейные уравнения и матрицы

Математические понятия и теоремы существуют независимо от человеческого мышления. Γ . Кантор

2.1. Линейные уравнения с одним и двумя неизвестными

2.1.1. Линейные уравнения с одним неизвестным

А. Уравнение

$$ax - b = 0$$

называется линейным уравнением с одним неизвестным.

Очевидно, что

указанное уравнение имеет единственное решение $x_0 = b/a$, когда $a \neq 0$ и $x \in \mathbf{R}$.

Б. По аналогии с линейным уравнением определим *линейное сравнение* с одним неизвестным (определение и свойства сравнений см. в Разделе 1.2.5):

$$ax - b \equiv 0 \pmod{m}$$
.

Рассмотрим, в каких случаях линейное сравнение имеет решение (a, b, m — целые числа).

1) Пусть HOД(a, m) = 1 (a и m являются взаимно простыми числами).

В этом случае, если x принимает последовательно одно из значений

$$0, 1, ..., m-2, m-1,$$

то от деления чисел ax на m получим m разных остатков (см. в Разделе 1.3.4 доказательство малой теоремы Ферма) и, следовательно, одно и только одно из чисел ax (например, ax_0) будет сравнимым с числом b по модулю m. Очевидно, что помимо x_0 данному линейному сравнению удовлетворяет и любое x, срав-

нимое с x_0 , то есть имеющее вид $x = x_0 + mk$, где k — произвольное целое число.

Таким образом

при НОД(a, m) = 1 общее решение линейного сравнения имеет вид $x = x_0 + mk$, где $0 \le x_0 \le m - 1$ и k — произвольное целое число.

Опишем *три разных способа*, позволяющих найти частное решение x_0 линейного сравнения $ax - b \equiv 0 \pmod{m}$.

Способ 1. Искать x_0 **методом перебора** значений 0, 1, ..., m-2, m-1.

Способ 2. В Разделе 1.2.4 приведен алгоритм нахождения таких целых чисел A и B, что $aA+mM=\mathrm{HOД}(a,m)$. Так как в нашем случае $\mathrm{HOД}(a,m)=1$, имеем aA+mM=1. Умножив последнее равенство на b, получим aAb+mMb=b, и, значит, справедливо сравнение $aAb-b\equiv 0\pmod{m}$. Так как исходное сравнение имеет вид $ax-b\equiv 0\pmod{m}$, приходим к выводу, что $x_0=Ab$.

Способ 3. В Разделе 1.3.4 доказана теорема Эйлера, согласно которой, если целое число a > 1 взаимно просто с m {НОД(a, m) = 1}, то $a^{\phi(m)} \equiv 1 \pmod{m}$ или

$$a^{\varphi(m)} - 1 \equiv 0 \pmod{m}$$
,

где $\phi(m)$ — функция Эйлера, значение которой равно количеству всех таких целых чисел b < m, что НОД(b, m) = 1. Умножив последнее сравнение на b, получим, что

$$ba^{\varphi(m)} - b \equiv 0 \pmod{m}$$
.

Так как исходное сравнение имеет вид $ax - b \equiv 0 \pmod{m}$, приходим к выводу, что $x_0 = ba^{\phi(m)-1}$.

П р и м е р 1. Используя Способы 2 и 3, найти решение линейного сравнения

$$105x - 11 \equiv 0 \pmod{38}$$
.

і) При использовании Способа 2 имеем

$$105 \times (-17) + 38 \times 47 = 1$$

(см. Пример в Разделе 1.2.4) и, значит, $x_0 = -17 \times 11 = -187$. Таким образом, общее решение этого сравнения имеет вид

$$x = -187 + 38k$$

$$x = -187 + 5 \times 38 + 38k = 3 + 38l$$
.

где k и l — произвольные целые числа.

іі) При использовании Способа 3 необходимо сначала подсчитать значение функции Эйлера $\phi(m)$ при m = 38. Так как произведение 2×19 является каноническим разложением числа 38, имеем

$$\varphi(38) = (2-1)(19-1) = 18$$

(способы подсчета значений $\phi(m)$ см. в Разделе 1.3.4 после доказательства теоремы Эйлера) и, значит, $x_0 = ba^{\phi(m)-1} = 11 \times 105^{17}$. Таким образом, при использовании Способа 3 общее решение обсуждаемого сравнения имеет следующий вид

$$x = 11 \times 105^{17} + 38k$$
.

где k — произвольное целое число.

Для того чтобы упростить полученное решение, заметим, что

$$105 \equiv -9 \pmod{38}$$
, $105^2 \equiv 81 \equiv 5 \pmod{38}$,

$$105 \equiv -9 \pmod{38}$$
, $105^2 \equiv 81 \equiv 5 \pmod{38}$, $105^4 \equiv 25 \pmod{38}$, $105^5 \equiv -225 \equiv 3 \pmod{38}$,

$$105^{15} \equiv 27 \equiv -11 \pmod{38}, \qquad 105^{17} \equiv -55 \equiv -17 \pmod{38},$$

$$11 \times 105^{17} \equiv -187 \equiv 3 \pmod{38}$$
,

и, значит,

$$x = 3 + 38k$$
.

2) Пусть HOД(a, m) = d > 1.

В этом случае, a = da', m = dm', где HOД(a', m') = 1.

Докажем, что

- а) если в не делится на д нацело, то линейное сравнение не имеет решений;
- б) если в делится на d, то линейное сравнение имеет d частных решений

$$x = x_0 + m'k = x_0 - (m/d)k$$
, где $k = 0, 1, 2, ..., d-1, a$ x_0 — одно из чисел $0, 1, ..., m/d-1$.

Действительно,

а) Если x удовлетворяет линейному сравнению $ax - b \equiv 0$ (mod m), To

$$ax - b = mc$$
 и $b = ax - mc = d(a'x - m'c)$,

то есть b должно быть кратно d.

б) Если b делится на d, то b = db' и сравнение $da'x - db' \equiv 0$ (mod dm') равносильно (см. в Разделе 1.2.5 свойство 3 сравнений) сравнению

$$a'x - b' = 0 \pmod{m'}$$
,

которое, как уже известно (см. пункт 1), имеет решение

$$x = x_0 + m'k = x_0 - (m/d)k$$
.

Легко сообразить, что

- α) числа $x_0 + m'k$ образуют столько частных решений исходного сравнения $ax b \equiv 0 \pmod{m}$, сколько их содержится в полной системе вычетов: 0, 1, 2, ..., m-2, m-1;
- β) из чисел $x = x_0 + m'k$ в полную систему наименьших неотрицательных вычетов попадают только

$$x_0, x_0 + m', x_0 + 2m', ..., x_0 + (d-1)m',$$

то есть всего d чисел. Таким образом, у исходного сравнения имеется ровно d частных решений.

П р и м е р 2. Найти все частные решения линейного сравнения

$$9x - 15 \equiv 0 \pmod{21}$$
.

Так как HOД(9, 21) = 3 и $15 = 3 \times 5$, сравнение $9x - 15 \equiv 0 \pmod{21}$ заменим сравнением

$$3x - 5 \equiv 0 \pmod{7}.$$

i) Используем для решения этого сравнения указанный ранее Способ 2.

Сначала найдем такие целые числа A и B, что $3 \times A + 7 \times B = 1$ (описание алгоритма нахождения таких целых чисел приведено в Разделе 1.2.4):

1. Из алгоритма Евклида получим следующую цепочку равенств:

$$7 = 3 \times 2 + 1$$

 $3 = 1 \times 2 + 1$
 $2 = 1 \times 2$

Откуда НОД(7, 3) = 1, k = 2 и набор чисел $\{q\} = 2, 2$.

2.
$$A_0 = 0$$
, $B_0 = 1$, $A_1 = 1$, $B_1 = -2$.
 $A_2 = A_0 - q_1 A_1 = 0 - 2 \times 1 = -2$, $B_2 = B_0 - q_1 B_1 = 1 - 2 \times (-2) = 5$.

Таким образом, $A=5,\,B=-2\,\,$ и, значит, справедливо соотношение

$$3 \times 5 + 7 \times (-2) = 1$$
.

Умножив полученное соотношение на 5, получим

$$3\times5\times5 + 7\times(-2)\times5 = 1\times5$$
.

Следовательно, справедливо сравнение

$$3 \times 25 - 5 \equiv 0 \pmod{7},$$

а общее решение сравнения $3x - 5 \equiv 0 \pmod{7}$ имеет вид

$$x = 25 - 7k$$
 или $x = 25 - 7 \times 3 + 7k = 4 + 7l$,

где k и l — произвольные целые числа.

Все три частных решения исходного сравнения $9x - 15 \equiv 0 \pmod{21}$ получим из общего решения x = 4 + 7l при l = 0, 1 и 2:

$$x = 4$$
, 11 и 18.

іі) Используем для решения сравнения $3x - 5 \equiv 0 \pmod{7}$ указанный ранее Способ 3.

Сначала подсчитаем значение функции Эйлера $\phi(m)$ при m=7. Так как 7 — простое число,

$$\varphi(7) = (7-1) = 6$$

(способы подсчета значений $\varphi(m)$ см. в Разделе 1.3.4 после доказательства теоремы Эйлера) и, значит, $x_0 = ba^{\varphi(m)-1} = 5 \times 3^5 = 1$ 215. Таким образом, при использовании Способа 3 общее решение обуждаемого сравнения имеет следующий вид

$$x = 1\ 215 + 7k = 1\ 215 - 173 \times 7 + 7k = 4 + 7l,$$

где k и l — произвольные целые числа.

2.1.2. Линейные уравнения с двумя неизвестными

Рассмотрим уравнение

$$ax + by - c = 0$$
,

которое называется π *инейным уравнением* с двумя неизвестными x и y.

1. Очевидно, что

при $a \neq 0$ и $x, y \in \mathbf{R}$ (\mathbf{R} — множество действительных чисел) все решения x_0 уравнения ax + by - c = 0 задаются условиями

- i) $x_0 = (c by)/a$;
- іі) у произвольное действительное число.
- 2. Пусть $a,b,c,x,y \in \mathbf{Z}$, где \mathbf{Z} множество целых чисел. В этом случае уравнение ax+by-c=0 называется линейным диофантовым уравнением с двумя неизвестными x и y.
- а) Если НОД(a, b) = d, то $a = a_1 d$, $b = b_1 d$ и обсуждаемое уравнение имеет вид

$$d(a_1x+b_1y)=c.$$

Полученное уравнение может иметь целые решения только в том случае, когда $c = c_1 d$. Сокращая на d, получим уравнение

$$a_1x + b_1y = c_1,$$

в котором НОД $(a_1, b_1) = 1$.

Далее будем полагать, что в исходном уравнении ax + by - c = 0 HOД(a,b) = 1.

- б) Найдем, как выглядит общее решение диофантового уравнения ax + by c = 0.
 - i) Пусть c = 0. В этом случае уравнение имеет вид

$$ax + by = 0$$

и, следовательно,

$$x = -(b/a) y$$
.

Так как $x, y \in \mathbf{Z}$, получаем, что

$$y = ak$$
 и $x = -(b/a)ak = -bk$,

где k — произвольное целое число.

іі) Пусть $c \neq 0$. Докажем, что

если x_0 и y_0 — частное решение уравнения ax + by - c = 0, то **общее решение** этого уравнения имеет вид

$$x = x_0 - bk$$
, $y = y_0 + ak$.

Действительно, пусть x', y'— произвольное решение уравнения ax + by - c = 0. Тогда из равенств

$$ax' + by' - c = 0$$
 и $ax_0 + by_0 - c = 0$

получаем

$$y' - y_0 = a(x_0 - x')/b$$
.

Так как $y' - y_0$ — целое число и НОД (a,b) = 1 получаем, что $x_0 - x'$ должно делиться на b, то есть

$$x_0 - x' = bk$$
, $y' - y_0 = abk/b = ak$,

где k — произвольное целое число, и, значит, любое решение x', y' диофантового уравнения ax + by - c = 0 имеет вид

$$x' = x_0 - bk$$
, $y' = ak + y_0$.

в) Обратим внимание, что из изложенного в пункте (б) не ясно, каким образом можно найти частное решение x_0 , y_0 диофантового уравнения ax + by - c = 0. В данном пункте продемонстрируем, что для решения указанной проблемы достаточно задачу о решении диофантового уравнения ax + by - c = 0, свести к задаче о решении соответствующего линейного сравнения с одним неизвестным.

Действительно, из уравнения ax + by = c получаем, что y = (c - ax)/b.

Пусть НОД($a,\,c$) = d, то есть $a=a_{\mathrm{l}}d\,$ и $c=c_{\mathrm{l}}d\,$. Тогда

$$y = (c - ax)/b = (c_1d - a_1dx)/b = -d(a_1x - c_1)/b$$

и, следовательно, должно выполняться линейное сравнение $a_1x-c_1\equiv 0\ (\mathrm{mod}\ b).$

і) В согласии с указанным ранее Способом 2 решения линейных сравнений (см. Раздел 2.1.1), сравнение $a_1x-c_1\equiv 0\pmod b$ имеет целочисленное решение $x=Ac_1+bk$, где k произвольное целое число и A — такое целое число, что при некотором целом B справедливо соотношение

$$a_1\bar{A} + bB = 1.$$

Умножив соотношение $a_1A+bB=1$ на c_1d , получим $a_1c_1dA+c_1dbB=c_1d$. Откуда, учитывая, что $a_1d=a$ и $c_1d=c$, получим соотношение $aAc_1+b(cB)=c$ и, значит,

$$c - aAc_1 = b(cB)$$
.

При $x = Ac_1 + bk$

 $y = -d(a_1x - c_1)/b = (c - aAc_1)/b - ak = b(cB)/b - ak = cB - ak$ и, очевидно, является целым числом.

Таким образом, получаем следующий результат:

при НОД(a,b) = 1 общее целочисленное решение линейного уравнения ax + by - c = 0 имеет вид $x = Ac_1 + bk$ и y = cB - ak, где k — произвольное целое число, a A u B удовлетворяют уравнению $a_1A + bB = 1$.

іі) В согласии с указанным ранее Способом 3 решения линейных сравнений (см. Раздел 2.1.1), сравнение $a_1x-c_1\equiv 0\pmod b$ имеет целочисленное решение $x=c_1a_1^{\phi(b)-1}+bk$, где k— произвольное целое число и $\phi(b)$ — функция Эйлера.

При
$$x=c_1a_1^{\varphi(b)-1}+bk$$

$$y=-d(a_1x-c_1)/b=-c(a_1^{\varphi(b)}-1)/b-ak$$

и так как по теореме Эйлера $(a_1^{\varphi(b)}-1)$ делится на b (см. Раздел 1.3.4), y является целым числом.

Таким образом, получаем следующий результат:

при НОД(a,b) = 1 общее целочисленное решение линейного уравнения ax + by - c = 0 имеет вид $x = c_1 a_1^{\varphi(b)-1} + bk$ и $y = -c(a_1^{\varphi(b)}-1)/b - ak$, где k — произвольное целое число и $\varphi(b)$ — функция Эйлера.

Отметим, что для *упрощения* указанного решения необходимо

- решение $x = c_1 a_1^{\varphi(b)-1} + bk$ представить в виде $x = x_0 + bk$, где $|x_0| < |b|$ (см. Примеры 1, 2 в Разделе 2.1.1);
- решение $y=-c(a_1^{\varphi(b)}-1)/b-ak$ заменить на $y=y_0-ak$, где $y_0=-d(a_1x_0-c_1)/b$.

П р и м е р. Пусть требуется решить в целых числах уравнение

$$105x + 38y = 5$$
.

Имеем $y = (5 - 105x)/38 = -5 \times (21x - 1)/38$ и, следовательно, должно выполняться линейное сравнение

$$21x - 1 \equiv 0 \pmod{38}$$
.

- і) Найдем такие целые числа A и B, что $21 \times A + 38 \times B = 1$ (описание алгоритма нахождения таких целых чисел приведено в Разделе 1.2.4):
- 1. Из алгоритма Евклида получим следующую цепочку равенств:

$$38 = 21 \times 1 + 17$$

 $21 = 17 \times 1 + 4$
 $17 = 4 \times 4 + 1$
 $4 = 1 \times 4$

Следовательно, HOД(38, 21) = 1, k = 3 и набор чисел $q_0, q_1, \dots, q_{k-1} = 1, 1, 4.$

2. $A_0 = 0$, $B_0 = 1$, $A_1 = 1$, $B_1 = -1$. Подсчитаем значения A_{i+1} и B_{i+1} для i=1, 2.

$$\begin{split} A_2 &= A_0 - q_1 A_1 = 0 - 1 \times 1 = -1, \\ A_3 &= A_1 - q_2 A_2 = 1 - 4 \times (-1) = 5, \end{split} \qquad \begin{aligned} B_2 &= B_0 - q_1 B_1 = 1 - 1 \times (-1) = 2; \\ B_3 &= B_1 - q_2 B_2 = -1 - 4 \times 2 = -9. \end{aligned}$$

Таким образом, A = -9, B = 5 {21×(-9) + 38×5 = 1}, а искомое решение уравнения имеет вид

$$x = Ac_1 + bk = -9 \times 1 + 38k = -9 + 38k,$$

 $y = cB - ak = 5 \times 5 - 105k = 25 - 105k,$

где k — произвольное целое число.

ii) Так как $\phi(38) = 18$ (см. Пример 1 в Разделе 2.1.1), искомое решение уравнения 105x + 38y = 5 имеет вид:

$$x = c_1 a_1^{\varphi(b)-1} + bk = 21^{17} + 38k,$$

$$y = -c(a_1^{\varphi(b)} - 1)/b - ak = -5(21^{18} - 1)/38 - 105k.$$

Для того чтобы упростить полученное решение, заметим, что $21 \equiv -17 \pmod{38}$, $21^2 \equiv 441 \equiv -15 \pmod{38}$,

$$21^4 \equiv 225 \equiv -3 \pmod{38},$$
 $21^8 \equiv 9 \pmod{38},$

$$21 \equiv -17 \pmod{38},$$
 $21^2 \equiv 441 \equiv -15 \pmod{38},$ $21^4 \equiv 225 \equiv -3 \pmod{38},$ $21^8 \equiv 9 \pmod{38},$ $21^{16} \equiv 81 \equiv 5 \pmod{38},$ $21^{17} \equiv -85 \equiv -9 \pmod{38}.$

Откуда получаем, что $x_0 = -9$ и, значит,

$$x = x_0 + bk = -9 + 38k$$
,
 $y_0 = -d(a_1x_0 - c_1)/b = -5 \times \{21 \times (-9) - 1\}/38 = 5 \times 5 = 25$,
 $y = y_0 - ak = 25 - 105k$,

где k — произвольное целое число.

2.2. Классические (магические) и латинские матрицы

2.2.1. Алгоритмы построения классических матриц нечетного порядка

Классической (магической) матрицей {или, как еще часто говорят, классическим (магическим) квадратом} порядка n называется квадратная таблица размера $n \times n$, так заполненная последовательными натуральными числами от 1 до n^2 , что их сумма по строкам, столбцам и диагоналям таблицы одинакова. С древних времен известны алгоритмические описания следующих трех простых методов построения классических (магических) матриц нечетного порядка.

А. Метод террас.

4 3 2 1 0 -1 -2 -3 -4

				5				
			4		10			
		3		9		15		
	2		8		14		20	
1		7		13		19		25
	6		12		18		24	
		11		17		23		
			16		22			
				21				

3	16	9	22	15	
20	8	21	14	2	
7	25	13	1	19	
24	12	5	18	6	
11	4	17	10	23	
		(2)			

X	-4	-3	-2	-1	0	1	2	3	4
					(1)				

Рис. 5. Построение классической матрицы 5×5 методом террас.