
Ю. В. Чебраков

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ

Санкт-Петербург, 2010

УДК 511+512 ББК 22 Ч345

Рецензенты:

Доктор физико-математических наук, профессор С.-Петерб. техн. ун-та *М. А. Салль*Кандидат физико-математических наук, доцент ин-та истории естествознания и техники РАН *Л. И. Брылевская*

Чебраков Ю. В.

ЧЗ45 Теория магических матриц. – СПб.: Изд-во «ВВМ», 2010. – 280 с. – (Лекции по Математике. Вып. ТММ-1.)

ISBN 978-5-9651-0357-7

Данная книга является *первым выпуском* курса лекций, посвященных изложению современного варианта *теории магических матриц* (ТММ). В ней излагаются развитый автором функционально-алгебраический подход к решению различных комбинаторных задач о классических и нетрадиционных магических матрицах (в частности, о классических и нетрадиционных магических квадратах) и основные понятия и методы теории чисел, комбинаторного анализа, теории линейных уравнений и теории матриц, которые наиболее активно используются в ТММ.

Текст лекций написан простым понятным языком, содержит не только теоретический материал, но и описание разнообразных вычислительных алгоритмов и математических методов решения задач.

Книга рассчитана на широкий круг читателей: от студентов вузов и университетов до преподавателей и научных сотрудников.

УДК 511+512 ББК 22

© Ю. В. Чебраков, 2010

ной правильной магической матрицы 4×4 , которая приведена в Разделе 3.1.5}:

$$AF_9 = bN_1 - 2bN_2 + 5bN_3 + (a_1 - a_2)A + (a_1 + 2b)T$$

{Полное решение задачи о разложении магических матриц 4×4 на сумму 4-x компонент и тривиальной матрицы eT будет приведено нами во втором выпуске данных лекций.}.

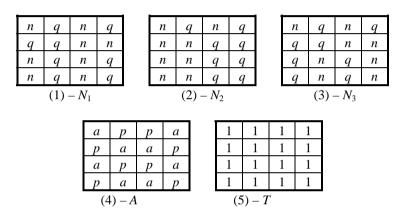


Рис. 37. Список N-, A-, T-компонент, на которые разложима алгебраическая формула AF_0 .

3.2. Магические матрицы $n \times n$ (n > 4) из простых чисел

3.2.1. Общий вид магической матрицы n×n и ее свойства

Построить *общую алгебраическую формулу* магической матрицы заданного порядка n > 4 можно тем же способом, как это было сделано для n = 3, 4 в Разделах 2.6.1 и 3.1.1.

 \mathcal{L} ействительно, используя условие магичности матрицы $A_{n\times n}=\{a_{ik}\}$, можно выписать 2n+2 уравнений: n для сумм a-символов в строках, еще n для сумм a-символов в столбцах и два для сумм a-символов в главных диагоналях (все указанные суммы одинаковы и равны S).

 $\{$ это связано с тем, что вычеркнутое уравнение можно получить из оставшихся 2n-1 уравнений $\}$.

Таким образом,

при любом n для определения n^2+1 неизвестных общей алгебраической формулы магической матрицы $n \times n$ имеется 2n+1 уравнений.

Будем считать, что для любого $n \ge 3$ система из оставшихся 2n+1 уравнений приводится методом Гаусса к системе из 2n-i+ 1 уравнений. В этом случае матрица В коэффициентов системы из 2n + 1 уравнений приводится к матрице B^* трапециевидной формы, ранг r которой равен 2n-j+1. При этом в окончательном решении обсуждаемой системы будут находиться $n^2 + 1 - r$ $= n^2 + 1 - (2n - j + 1) = n^2 - 2n + j$ произвольно задаваемых параметров и 2n - j + 1 переменных, значения которых определяются через некоторые линейные комбинации указанных параметров (см. Разделы 2.3.2, 2.4.4 и 2.6.1). Отметим также, что, если для определения значений S использовать какое-либо одно из 2n-j+1 уравнений обсуждаемой системы, то переменная S не будет входить в набор произвольно задаваемых параметров окончательного решения и в этом случае все $n^2 - 2n + j$ произвольно задаваемых параметров и 2n-j переменных, значения которых определяются через некоторые линейные комбинации указанных параметров, будут являться a-символами матрицы $A_{n \times n}$.

Утверждение 1. Общая алгебраическая формула магической матрицы $n \times n$ содержит $n^2 - 2n$ параметров и соответственно 2n символов, определяемых через эти параметры.

Доказательство.

С учетом изложенного ранее требуется доказать, что для любого $n \ge 3$ j = 0.

Докажем, что это верно, например, для всех n от трех до пяти.

- а) Для общих алгебраических формул магических матриц 3×3 и 4×4 количество произвольно задаваемых параметров равно соответственно 3 и 8 (см. Разделы 2.6.1 и 3.1.1), то есть при n=3,4 количество произвольно задаваемых параметров можно подсчитать по формуле n^2-2n и, следовательно, для этих случаев j=0.
- б) Пусть n=5 и задана символьная матрица $A_{5\times 5}=\{a_{ik}\}$ {см. Рис. 38(1) }.

a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}
a_{51}	a_{52}	a_{53}	a_{54}	a ₅₅
		(1)		

x_7	x_6	x_{10}	χ_5	x_3
x_8	a_{22}	x_9	a_{24}	x_4
a_{31}	a_{32}	a_{33}	a_{34}	x_2
a_{41}	a_{42}	a_{43}	a_{44}	x_1
a_{51}	a_{52}	a_{53}	a ₅₄	a ₅₅
		(2)		

Рис. 38. Построение общей алгебраической формулы магической матрицы 5×5.

При j=0 для построения из матрицы $A_{5\times 5}$ общей алгебраической формулы магической матрицы 5×5 пятнадцать a-символов необходимо выбрать произвольно, а оставшиеся десять a-символов будут некоторыми линейными комбинациями произвольных параметров. Будем считать, что зависимыми являются следующие a-символы матрицы $A_{5\times 5}$:

- а) все пять, находящиеся в ее первой строке;
- б) три, находящиеся во второй, третьей и четвертой строках крайнего справа столбца;
- в) один, находящийся во второй строке первого слева столбца;
- г) один, находящийся во второй строке третьего слева столбца $\{$ см. Рис. 38(2), на котором все зависимые a-символы переименованы в x-символы с присвоением им соответствующего порядкового номера).

Покажем, что

при указанной расстановке *х-символов* из матрицы 38(2) можно получить общую алгебраическую формулу магической матрицы 5×5.

Введем обозначения:

 R_i — сумма a-символов, находящихся в i-ой строке матрицы 38(2);

 C_i — сумма a-символов, находящихся в i-ом столбце;

 D_1 и D_2 — сумма a-символов, находящихся соответственно в восходящей и нисходящей главных диагоналях.

Из условия магичности матрицы 38(2) с учетом введенных обозначений получим для x-символов следующие выражения:

$$x_1 = R_5 - R_4$$
; $x_6 = R_5 - C_2$; $x_2 = R_5 - R_3$; $x_7 = R_5 - D_2$;
 $x_3 = R_5 - D_1$; $x_8 = R_5 - C_1 - x_7$; $x_4 = R_5 - C_5 - (x_1 + x_2 + x_3)$;
 $x_9 = R_5 - R_2 - x_4 - x_8$; $x_5 = R_5 - C_4$; $x_{10} = R_5 - C_3 - x_9$.

Отметим, что, подставив найденные выражения для x-символов в таблицу 38(2), получим символьную матрицу, в которой условие магичности выполнено для

- всех столбцов (из условия магичности столбцов определены выражения для символов x_8 , x_6 , x_{10} , x_5 , x_4);
- обеих главных диагоналей (из условия их магичности определены выражения для символов x_3, x_7);
- всех строк кроме первой (из условия магичности соответственно второй, третьей и четвертой строк определены выражения для символов x_9 , x_2 , x_1 ; пятая строка является магической, так как состоит из одних a-символов).

Проверим, выполняется ли условие магичности для первой строки матрицы 38(2). Для этого избавимся от *x*-символов в полученных выражениях для x_4 , x_8 , x_9 , x_{10} :

$$x_4 = R_5 - C_5 - (x_1 + x_2 + x_3) = R_5 - C_5 - R_5 + R_4 - R_5 + R_3 - R_5 + D_1 = D_1 - C_5 + R_4 + R_3 - 3R_5;$$

$$x_8 = R_5 - C_1 - x_7 = R_5 - C_1 - R_5 + D_2 = D_2 - C_1;$$

$$x_9 = R_5 - R_2 - x_4 - x_8 = R_5 - R_2 - D_1 + C_5 - R_4 - R_3 + R_3 - D_2 + C_1 = 4R_5 + C_1 + C_5 - D_1 - D_2 - R_4 - R_3 - R_2;$$

$$x_{10} = R_5 - C_3 - x_9 = R_5 - C_3 - 4R_5 - C_1 - C_5 + D_1 + D_2 + R_4 + R_3 + R_2 = D_1 + D_2 - C_1 - C_3 - C_5 - 3R_5 + R_4 + R_3 + R_2.$$

Подсчитаем теперь, чему равна сумма *х*-символов первой строки таблицы 38(2):

$$x_3 + x_5 + x_6 + x_7 + x_{10} = (R_5 - D_1) + (R_5 - C_4) + (R_5 - C_2) + (R_5 - D_2) + (D_1 + D_2 - C_1 - C_3 - C_5 - 3R_5 + R_4 + R_3 + R_2) =$$

= $R_5 + (R_2 + R_3 + R_4 + R_5) - (C_1 + C_2 + C_3 + C_4 + C_5) = R_5.$

Последнее верно, так как

$$R_2 + R_3 + R_4 + R_5 = C_1 + C_2 + C_3 + C_4 + C_5 = S_a$$

где S_a — сумма всех a-символов матрицы 38(2).

Обратим внимание, что

в рассмотренном доказательстве приведено правило расстановки х-символов в матрице 5×5 , которое легко обобщается на случай произвольного n>5.

Таким образом,

для любого n > 4 имеется возможность строить общие алгебраические формулы магических матриц $n \times n$ без решения исходной системы из 2n + 1 уравнений.

Из Утверждения 1 получаем, что при n > 4 количество параметров общей формулы магической матрицы $n \times n$ превышает количество символов, определяемых через эти параметры. По этой причине с ростом n происходит усложнение закона, существующего между символами общей формулы магической матрицы $n \times n$, и, следовательно, при $n \ge 4$ использование общих формул для решения задач о построении магических матриц $n \times n$ из простых чисел становится малоэффективным.

Далее обсудим, можно ли для построения магических матриц $n \times n$ (n > 4) из простых чисел использовать методы, изложенные в Разделе 3.1.

3.2.2. Алгоритм построения магических матриц из заданного набора n×n простых чисел

Напомним, что в Разделе 3.1.2 рассмотрен общий алгоритм решения задачи о построении магических матриц 4×4 из заданного набора 16-и простых чисел. Очевидно, что этот алгоритм легко модифицировать так, чтобы он стал пригоден для построения магических матриц $n\times n$ (n>4) из заданного набора $n\times n$ простых чисел. Однако при n>6 модифицированный алгоритм становится

практически бесполезным из-за того, что невозможно достичь окончательного результата за практически приемлемое время. Для иллюстрации приведем

- а) результаты, которые получаются на первых двух шагах работы обсуждаемого алгоритма, если с его помощью решается задача о построении множества всех классических матриц $n \times n$ для n = 3, 4, ..., 8 $\{S_n = n(n^2 + 1)/2$ магическая постоянная классической матрицы $n \times n$, R_n количество разбиений числа S_n на n различных слагаемых, каждое из которых принадлежит набору чисел $1, 2, ..., n^2$ (см. Раздел 1.1.7) $\}$;
- б) известные к настоящему времени значения A_n , где A_n количество классических матриц $n \times n$, подсчитанное с точностью до поворотов, отражений и М-преобразований (см. Раздел 3.1.2):

<i>n</i>	3	4	5	6	7	8
S_n	15	34	65	111	175	260
R_n	8	86	1 394	32 134	957 332	35 154 340
A_n	1	220	68 826 306	_	_	_

Отметим, что значение A_5 с помощью ЭВМ определили в 1973 г. Р. Шрёппель и М. Билер {сообщение об этом опубликовано, например, в (*Gardner M*. Time travel and other mathematical bewilderments. New York, 1988.)}.

3.2.3. Методы построения алгебраических формул магических матриц n×n из сумм классических и символьных матриц

Напомним, что в настоящее время существуют достаточно хорошо разработанные методы построения классических матриц $n \times n$ (см. Раздел 2.2) и диагональных латинских матриц (см. Раздел 2.2.3 и публикации { $Hasapok\ A.B$. Пары ортогональных дважды диагональных латинских квадратов порядков 15, 18 и 26 // Комбинаторный анализ. Вып.32. М.: МГУ, 1989.; Denes, J. and Keedwell, A.D. Latin squares and their application. Budapest: Academiai Kiado, 1974; $Heinrich\ K$. and $Hilton\ A.J$. W. Doubly diagonal orthogonal latin squares // Discrete Math. Vol.46. № 2. 1983.}). По

этой причине для построения магических матриц $n \times n$ (n > 4) из простых чисел пригодны методы, изложенные Разделе 3.1.4.

Для иллюстрации продемонстрируем, как можно построить из простых чисел магическую матрицу 6×6, используя диагональную латинскую и классическую матрицы 6-го порядка, приведенные соответственно на Рис. 39(1, 2) {классическая матрица 39(2) построена с помощью аналитической формулы, указанной в пункте (A) Раздела 2.2.5}.

Уменьшим числа классической матрицы 39(2) на единицу. Затем умножим числа получившейся новой таблицы на символ b и, наконец, сложим (поклеточно) b-символьную магическую матрицу с диагональной латинской матрицей 39(1). В результате получим алгебраическую формулу магической матрицы 6×6 , которая в виде символьной вспомогательной таблицы приведена на Рис. 39(3). Для получения окончательного результата осталось заполнить вспомогательную таблицу 39(3) простыми числами и затем с помощью классической матрицы 39(2) осуществить переход от этой таблицы к искомой магической матрицы 6×6 .

a_1	a_2	a_3	a_4	a_5	a_6		35	1	6	26	19	24	ĺ	
a_5	a_3	a_6	a_1	a_4	a_2		3	32	7	21	23	25		
a_4	a_1	a_5	a_2	a_6	a_3		31	9	2	22	27	20		
a_2	a_4	a_1	a_6	a_3	a_5		8	28	33	17	10	15	l	
a_6	a_5	a_4	a_3	a_2	a_1		30	5	34	12	14	16		
a_3	a_6	a_2	a_5	a_1	a_4		4	36	29	13	18	11		
(1)							(2)							
		$a_1 + 7b$		$a_1 + 9b$										
a_1	($a_1 + 7$	7 <i>b</i>	a_1 -	+ 9 <i>b</i>	a_1	+ 12	2 <i>b</i>	a_1 +	24 <i>b</i>	a_1	+ 26	b	
a_1 a_2		$a_1 + 7$ $a_2 + 7$	_		+ 9 <i>b</i> - 13 <i>b</i>	+ -	$\frac{1}{2} + 12$		$a_1 + a_2 +$		+	+ 26a + 28a		
	(_	7 <i>b</i>	<i>a</i> ₂ +		a_2		1 <i>b</i>		24 <i>b</i>	a_2		b	
a_2		$a_2 + 7$	7 <i>b</i> 2 <i>b</i>	$a_2 + a_3 - a_3 $	- 13 <i>b</i>	a_2	2 + 21	1 <i>b</i>	<i>a</i> ₂ +	24 <i>b</i> 16 <i>b</i>	a_2 a_3	+ 28	b b	
a_2 a_3	a	$a_2 + 7$ $a_3 + 2$	7 <i>b</i> 2 <i>b</i> 2 <i>b</i>	$a_{2} + a_{3} - a_{4} + a_{4} + a_{5}$	- 13 <i>b</i> + 6 <i>b</i>	a_2 a_3	$\frac{1}{2} + 21$	1 <i>b b 7 b</i>	$a_2 + a_3 +$	24 <i>b</i> 16 <i>b</i> 20 <i>b</i>	a_2 a_3 a_4	+ 28	b b b	
a_2 a_3 a_4	a	$a_2 + 7$ $a_3 + 2$ $a_4 + 1$	7b 2b 2b 2b b	$a_{2} + a_{3} - a_{4} + a_{5} - a_{5$	- 13 <i>b</i> + 6 <i>b</i> - 15 <i>b</i>	a_2 a_3 a_4 a_5	$\frac{1}{2} + 21$ $\frac{1}{3} + 8$ $\frac{1}{4} + 17$	1 <i>b b</i> 7 <i>b</i> 1 <i>b</i>	$a_2 + a_3 + a_4 + a_4 + a_4 + a_4 + a_5 + a_6 $	24 <i>b</i> 16 <i>b</i> 20 <i>b</i> 13 <i>b</i>	a_2 a_3 a_4 a_5	+ 28. + 28. + 23.	b b b	

Рис. 39. Построение из простых чисел магической матрицы 6×6.

Шесть последовательностей из шести простых чисел, подчиняющихся указанным в таблице 39(3) закономерностям, можно получить, положив, например, в этой таблице

$$b = 6$$
, $a_1 = 347$, $a_2 = 5$, $a_3 = 761$, $a_4 = 571$, $a_5 = 331$, $a_6 = 19$.

3.3. Наименьшие магические матрицы из простых чисел

3.3.1. Наименьшие матрицы 3×3 из простых чисел

В согласии с публикацией (*Andrews W.S. and Sayles H.A.* Magic squares made with prime numbers to have the lowest possible summations / The Monist, **23** (4). 1913), Дьюдени (H. Dudeney) еще в 1900 г. построил из простых чисел *наименьшую* магическую матрицу 3×3 , которая приведена на Рис. 16(1) в Разделе 2.6.4.

Первый алгоримм для построения из простых чисел магических матриц 3×3 предложен в публикации (Гуревич Е.Я. // Наука и жизнь. № 9. 1972). В принципе с помощью этого алгоритма возможно построить все те наименьшие магические матрицы 3×3 из простых чисел, которые приведены на Рис. 16 в Разделе 2.6.4. Однако о недостаточной эффективности алгоритма Е.Я. Гуревича свидетельствует тот факт, что в выводах указанной публикации

- а) ставится под сомнение возможность построения из простых чисел таких магических матриц 3×3 , для которых алгебраическая формула $A_S(a,b,c)$ {см. Раздел 2.6.1} имеет вид $A_S(17,b,c)$;
- б) утверждается, что из алгебраической формулы $A_S(17,b,c)$ нельзя получить магической матрицы 3×3 из простых чисел, когда $b \le 180$ и $c \le 114$.

Легко доказать, что положения (а) и (б) ошибочны.

Пействительно

і) ошибочность положения (а) доказывает магическая матрица 3×3, которая находится в левом верхнем углу магической матрицы 9×9, представленной на Рис. 17(1) {см. Раздел 2.6.4};